

<u>Hall A – CLEO Magnet</u>

<u>Aaron Brown, Brian Eng</u>

• Continued NX12 design of sensor enclosure

NX12 model for 3D-printed enclosure base

- Total time needed for measurements is the scale from few hours to one day at most
 - ★ Removing code that was for saving power, as this is no longer needed, and the display was having issues restarting after deep sleep

<u>Hall A – Møller</u>

<u>Brian Eng</u>

- Met with Probir to go over instrumentation and controls
 - ★ Switching all temperature sensors to PT100s
 - * Need a cost comparison between using PLC modules vs MSLEV chassis
 - ★ Need to identify flow meters

<u>Hall A – SoLID</u>

Mary Ann Antonioli, Pablo Campero, Mindy Leffel

- Wired five flanges; all six complete
- Completed modifications to PLC code to monitor the axial and radial supports sensors
 - Created routines that compare each load sensor readout against warning limits and interlock limits
 - * Added PLC tags to allow input of the high and low limits
 - ★ Implemented routines to main PLC logic
 - ★ Added code to generate slow ramp down when axial or radial supports sensors are out of set limits
- Modified Radial & Axial Supports Expert HMI screen
 - ★ Added inputs for each axial and radial support sensor to control the high and low warning and slow ramp down thresholds
 - ★ Tested modifications; no problems

Detector Support Group

We choose to do these things "not because they are easy, but because they are hard". Weekly Report, 2022-10-26

Solenoid_ra	idial_axial_su	pports_expert - /	SoLID_SolenoidV4/	7			
10/25/2022		Solenoid P	Radial & Ax	ial Sun	norts	- Exn	art
12:05:37 PM		Solemona		iai sup	perte	=~p	
Radial Supp	orts - Upstre	eam Worping	Slow Pamp Down	Enable	Warning	Interlook	Somer
N.	Load [Kgf]	Threshold	Threshold	Interlock	Status	Status	Read Fault
		Low High	Low High			_	_
Radial_A	158.5	50.0 157.6	0.0 150.0	Enable	Warning		
Radial_B	2322	0.0 2400.0	0.0 2500.0	Enable	OK	•	
Radial_C	785.5	0.0 800.0	0.0 900.0	Enable	OK		
Radial_D	164.4	0.0 260.0	0.0 300.0	Enable	OK		
Radial_E	178.8	0.0 260.0	0.0 300.0	Enable	OK		
Radial_F	180.2	20.0 30.0	0.0 900.0	Enable	Warning		
Radial_G	2248	0.0 2400.0	0.0 2500.0	Enable	OK		
Radial_H	189.3	39.0 -3600.3	0.0 300.0	Enable	Warning		
Radial Supp	orts - Down	stream					
Radial_J	182.0	0.0 260.0	0.0 260.0	Enable	ОК		
Radial_K	2191	0.0 2400.0	0.0 2400.0	Enable	OK	- -	Ä
Radial_L	178.2	0.0 260.0	0.0 260.0	Enable	OK	—	—
Radial_M	182.0	0.0 260.0	0.0 260.0	Enable	OK	—	Ä
Radial_N	179.1	0.0 260.0	0.0 260.0	Enable	OK	—	Ä
Radial P	175.3	0.0 260.0	0.0 260.0	Enable	OK	- -	Ä
Radial R	2333	0.0 2400.0	0.0 2400.0	Enable	OK	—	—
Radial_S	169.7	0.0 260.0	0.0 260.0	Enable	OK	—	—
					JIC		
Axial Supp	orts - Upstre	am					
Axial_T	1.51	0.0 100.0	0.0 200.0	Enable	OK		
Axial_V	40.03	15.0 200.0	10.0 80.0	Enable	OK		
Axial_W	26.52	0.0 300.0	0.0 50.0	Enable	OK		ē
Axial_X	-14.1	14.3 400.0	20.0 600.0	Enable	ОК		ē
	Radia	al Supports - Up	stream	Radial & A	vial		
Reset	Radia	al Supports - Do	wnstream	Support	ts		
Interlock	Axial	Supports - Upst	tream	Radial Sup	ports	Γ	Print
						_	

Solenoid Radial & Axial Support - Expert HMI screen

<u>Hall B – Magnets</u>

<u>Brian Eng</u>

- Solenoid fast dump: <u>https://logbooks.jlab.org/entry/4067563</u>
 - ★ No obvious causes; the sequence of events module lost communication and needed to be power cycled

<u>Hall C – NPS</u>

Mary Ann Antonioli, Peter Bonneau, Aaron Brown, Brian Eng, Tyler Lemon, Marc McMullen

- Completed fabrication of humidity sensor power distribution panel
 - Discussed with Brad Sawatzky the design of, and connections to, the +5 V power distribution box for the relative humidity sensors
 - ★ The cable from the power supply to the distribution panel will be 8-conductor (four twisted pairs) terminated with an 8-pin connector
- Began low voltage Phoebus screen
- Reviewing the Phoebus screens manual
- Reviewing documentation of the VME LED Driver (VLD) module
- Discussed procedure to test Phoebus screens, set up computer for testing, and began testing the *Front Crystal Zone Temperature Monitoring* screen
 - Contacted computer center to move the Keysight mainframe and the NPS cRIO from the Hall B development subnet to the Hall C development subnet
 - ★ Copied the hardware interlock LabVIEW program to the NPS cRIO; verified that program runs correctly
 - ★ Installed CSS-Phoebus software on computer

Detector Support Group <u>We choose to do these things "not because they are easy, but because they are hard".</u> Weekly Report, 2022-10-26

- Will provide a simplified version of the hardware interlock LabVIEW program for NPS testing in the EEL building
 - ★ The ability to disable sensors will be removed
- Tested 12 relative humidity sensors to be used for NPS the readback of all 12 sensors' relative humidity was within 2–3% of the control relative humidity sensor
- Developing test IOC on DSG development PC for MPOD low voltage communication to EPICS
 - ★ Investigating how to add SNMP command capabilities (how MPODs communicate over the network) to an EPICS IOC

<u>Hall D – JEF</u>

<u>Mindy Leffel</u>

• Wrapped eight crystals

EIC

Pablo Campero, Brian Eng, George Jacobs, Marc McMullen

• Beampipe PR was delayed; assigned buyer on 10/25

EIC - DIRC

Tyler Lemon, Marc McMullen, Peter Bonneau

- Met with DIRC group to discuss laser room infrastructure and interlock system
- Laser interlock system circuit
 - ★ Latest system will use a timed relay for laser enable contacts
 - ★ Has keyed switch for allowing control from and lockout of an exterior control panel
 - Exterior control panel will duplicate *immediate status*, *latched status*, *reset active*, *bypass active*, and reset button so it can be seen from outside of laser area
 - ★ Compiling list of parts and instrumentation needed for laser interlock system

Laser interlock controls diagram

- Investigating more readily available instrumentation for photodiode data acquisition
 - ★ National Instruments and Keithley options have ~16 week lead times
 - * Can receive an Arduino external ADC and display in 2-3 weeks from ordering
- Submitted the laser task hazard analysis, laser operating procedure, and laser specific training plan to Laser Safety Officer Jenn Williams for review